The convergence properties of a new hybrid conjugate gradient parameter for unconstrained optimization models

Author:

Sulaiman I M,Mamat M,Waziri M Y,Yakubu U A,Malik M

Abstract

Abstract The hybrid conjugate gradient (CG) algorithms are among the efficient modifications of the conjugate gradient methods. Some interesting features of the hybrid modifications include inherenting the nice convergence properties and efficient numerical performance of the existing CG methods. In this paper, we proposed a new hybrid CG algorithm that inherits the features of the Rivaie et al. (RMIL*) and Dai (RMIL+) conjugate gradient methods. The proposed algorithm generates a descent direction under the strong Wolfe line search conditions. Preliminary results on some benchmark problems reveal that the proposed method efficient and promising.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference47 articles.

1. The convergence properties of some descent conjugate gradient algorithms for optimization models;Sulaimana;Journal of Mathematics and Computer Science,2021

2. A Descent Modification of Conjugate Gradient Method for Optimization Models;Sulaiman;Iraqi Journal of Science.,2019

3. Function minimization by conjugate gradients;Fletcher;Comput. J.,1964

4. Note sur la convergence de directions conjug´ees;Polak;Rev. Francaise Informat Recherche Opertionelle, 3e ann´ee,1969

5. The conjugate gradient method in extremem problems;Polyak;USSR Comp. Math. Math. Phys.,1969

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3