Energy Harvesting Technique for Massive MIMO Wireless Communication Networks

Author:

Bolla Sandhya,Singh Manwinder

Abstract

Abstract Massive For wireless data and energy transfer, MIMO, a key component of future 5G systems, is favourable. A big part of the reason for this is that it has the ability to narrow down the distribution of energy. The scope of something enormous Multiple-Input in 5G, harvesting may be used to boost system capacity and efficiency via multiple-output multiple access. This was followed by the introduction of the Simultaneous Wireless Information and Power Transfer (SWIPT) method, commonly known as energy harvesting optimization. Specific to each user’s needs, we connected a splitter on the receiver, and we measured their output using power beacons. In order to achieve the lowest possible communication rate, the user’s total gathered power is boosted. Simulations show that the proposed technique is more successful than the other options out there. There are two sources of energy for D2D transmitters: specialised beacon signals, and cellular users (CUs) radio frequency (RF) interference. In D2D transmitters, inverse power control techniques are used for power regulation. We employ Poisson Point Processes(PPP) to model the proposed hybrid network’s CU, D2D user (DU), and PB locations. Each slot in the time period is assigned a different beam forming weight. Using the alternating minimization technique, we provide a solution approach for a non-convex quadratic ally limited linear problem. Long-distance wireless power transmission requires the use of energy beam generation technologies in a large-scale MIMO system in order to make sure that the transmission is safe. In other words, this letter tries to maximise the energy efficiency of information transmission (bits per joule) while keeping the required quality of service (QoS), which is a delay constraint, in mind. This is done by maximising the transfer length and transmits power, among other things. In this case, we try to maximise the total amount of energy at the relays, use block diagonalization (BD) at the source, and try to minimise interference between the relay-destination channels. As a last step, we also run simulations of the power consumption of a generic circuit. As a supplement to this work, there are some basic online rules for all possible situations. Numerical results show that a near-optimal online technique can do the same job as its offline counterpart when the maximum power consumption of the circuit is taken into account.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference39 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3