An estimation method for parachute parameters

Author:

Li Zhibin,Cai Wenquan,Wu Yunchen

Abstract

Abstract As a significant tool of transportation widely used in the logistics field, a well-performed parachute is highly required for this demand, especially for the sake of higher cost performance. The current study aims to investigate the internal relationship amidst various parameters of the parachute, conducting error analysis and accordingly providing an optimal experimental scheme. The objective of this experiment is to determine reference area and the resistance coincident, which are primarily parameters to estimate the weight of the designed parachute. Because the reference area is hard to determine using regular geometry method, a new parameter area ratio is redefined as the ratio of the original area of parachute surface to the reference area so that the reference area can be calculated by solving geometry problem. A simplified assumption that the parachute can be seen as a quasi-rigid body was previously made in order to approach the ideal parachute. Despite several limitations of the experiment, the final results perfectly aligned with the pre-experiment expectation. By following the similar procedures and after several trials, the ratio of the original area of parachute surface to the reference area was determined to be 3.90 and the resistance coincident to fall in the range of 2.00-3.00.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference20 articles.

1. Newtonian jet stability: The role of air resistance;Fenn;AIChE J.,1969

2. Richard Nakka’s Experimental Rocketry Web Site;Nakka,1997

3. Effect of the transient nature of flow on annular parachute drag prediction;McQuilling;J. Aircr.,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3