Author:
Bachtis Dimitrios,Aarts Gert,Lucini Biagio
Abstract
Abstract
The transition to Euclidean space and the discretization of quantum field theories on spatial or space-time lattices opens up the opportunity to investigate probabilistic machine learning within quantum field theory. Here, we will discuss how discretized Euclidean field theories, such as the ϕ
4 lattice field theory on a square lattice, are mathematically equivalent to Markov fields, a notable class of probabilistic graphical models with applications in a variety of research areas, including machine learning. The results are established based on the Hammersley-Clifford theorem. We will then derive neural networks from quantum field theories and discuss applications pertinent to the minimization of the Kullback-Leibler divergence for the probability distribution of the ϕ
4 machine learning algorithms and other probability distributions.
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献