Towards the Increase in Granularity for the Main Hadronic ATLAS Calorimeter: Exploiting Deep Learning Methods

Author:

Gaspar Philipp

Abstract

Abstract During the second phase upgrade program developed for LHC and its experiments, the main hadronic calorimeter of ATLAS (TileCal) will replace completely its readout electronics, but the optical signal pathway and detector will be kept unchanged. During the R&D studies for the upgrade, initial analyses for improving the calorimeter granularity were made. A granularity improvement could be achieved through the introduction of Multi-Anode Photomultiplier Tubes (MA-PMTs) into the calorimeter readout chain, together with applications of image processing algorithms for identifying sub-regions on calorimeter cells. This paper presents the latest results from using a Generative Adversarial Network (GAN) to generate synthetic images, which simulate real images formed in the MA-PMT. After the classification of cell sub-regions, preliminary results show a classification accuracy of more than 98% on the experimental test set.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3