Self-organization of processes in gas and liquid-phase catalytic reactors

Author:

Merentsov N A,Persidskiy A V,Groshev V V,Kozlovtsev V A,Golovanchikov A B

Abstract

Abstract The paper provides a system of flexible self-organization of hydrodynamic, thermal and diffusion processes in gas and liquid-phase catalytic reactors the purpose of which is to self-adapt the system to the most qualitative chemical catalytic and gas-liquid reactions and search for the best energy transfer modes (resonant modes). The developed flexible system of self-organization of processes in catalytic and gas-liquid reactors implies using elastically deformable layers of catalysts, both independently made from the required materials (contributing to resonance and effective chemical reactions) and applied on blocks of compressed metal shavings with volumetric-elastic properties. This allows affecting the chemical reactions significantly and also solving a very serious environmental problem of recycling manufacturing wastes since various steel grades being mechanically processed at machine-building enterprises form a huge amount of wastes with various properties and configuration; those block scan undoubtedly be applied as elastically deformable catalyst units in manufacturing.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3