Solid State Reaction Synthesis and Characterization of Cu doped TiO2 Nanomaterials

Author:

Abbas M. M.,Rasheed M.

Abstract

Abstract In this work, copper-doped titanium dioxide (TiO2) nano-powder with of different doping concentration, weights were successfully fabricated with a classical method. This method authorizes obtaining pellets from powder in nonmetric scale with a small quantity. The best conditions for fabrication these pellets are acquired. Different quantities of Cu concentrations (0%, 3%, 5%, and 7%) are mixed with TiO2 (NPs) nano-particles. Then, the mixed powders are transformed into pellets using hydraulic press and sintered by a traditional furnace at temperature of about 1100 °C. The following apparatus demonstrates the structural, morphological, mechanical, optical properties and the composition of elements of materials for those as-prepared samples: X-ray diffraction (XRD), optical microscope, scanning electronic microscope (SEM), Shore D hardness instrument, roughness test Instrument, Lee’s Disc, Fourier-transform infrared spectroscopy (FTIR) and Energy-dispersive X-ray spectroscopy (EDS) respectively. The effects of Cu doped concentrations on the properties of TiO2 NPs based on the above instruments are examined. Crystalinality of these materials revealed by XRD patterns and have a grain size between (20-30) nm. A roughness measurement points that TiO2 NPs values decreases with the addition of Cu weights because of hardness values of the samples. Moreover, results showed that the thermal conductivity increased with the increasing the weight fraction of Cu element. The main goal of the present research is to demonstrate the annealing temperature dependent behavior of the broadening parameter and the properties of Cu doped TiO2 NPs.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3