Bimorph mirrors at synchrotron beamlines: from walking to flying

Author:

Sutter John P.,Alcock Simon G.,Nistea Ioana-Theodora,Signorato Riccardo,Foster Andrew,Sawhney Kawal

Abstract

Abstract With brighter synchrotron sources, automated sample changers, and faster detectors, there is a strong scientific need for rapid and precise variation of the X-ray beam profile, rather than the “set and forget” operation of years past. Piezoelectric bimorph deformable mirrors already allow quick beam profile changes without the heat generation and wear of mechanical devices. Now, their early technological limitations – excessively constraining holders, progressive “junction effect” distortion, and communication bottlenecks with power supplies – are being overcome by a collaboration of scientists and engineers both in industry and at Diamond Light Source. A new generation of bimorph mirrors maintains a stable figure over extended periods of operation. Improved holders and flexible electrical connectors are greatly reducing the mechanical strain imparted to bimorphs, thereby improving their speed, accuracy, and stability. A more sophisticated high voltage power supply has on-board signal processing capacity, allowing large focusing changes within seconds and providing programmable time-varying voltage profiles to counteract piezoelectric creep. The communication between beamline systems and power supplies is being freed of bottlenecks and now runs stably up to 1 Hz. Early tests have already shown that bimorph mirrors can repeatedly switch the size of an X-ray beam in well under 10 seconds. Bimorph mirrors at synchrotron beamlines are now growing beyond the largely static operation of the past and gaining a new dynamism through development projects that are now well advanced. We report on how these endeavours will make it easier for beamlines to utilise the full potential of bimorph mirrors.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3