Dual-Branch feature fusion residual neural network for individual radar signal recognition in low SNR environments

Author:

Jing Zehuan,Li Peng,Yan Erxing,Chen Yingchao,Zhang Jiamiao,Wu Bin,Gao Youbing

Abstract

Abstract To address the challenge of radar emitter signal individual recognition, where single-dimensional radar fingerprint features are susceptible to noise interference and neural networks exhibit low recognition accuracy in low signal-to-noise ratio (SNR) environments, this study introduces a residual neural network predicated on a two-branch feature fusion. This approach amalgamates two-dimensional time-frequency domain features with one-dimensional intermediate-frequency signal features. Unlike existing algorithms, our proposed method integrates the knowledge gleaned from features learned across different dimensions. This integration enables the neural network to utilize features from multiple dimensions for recognition, thereby mitigating the impact of noise on a single feature. Experimental results demonstrate that our proposed algorithm outperforms others under various low SNRs, achieving an average recognition rate of 88.39%.

Publisher

IOP Publishing

Reference10 articles.

1. Specific Emitter Identification via Convolutional Neural Networks;Ding;IEEE Communications Letters,2018

2. Radar emitter recognition based on SIFT position and scale features;Liu;IEEE Transactions on Circuits and Systems II: Express Briefs,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3