A Reliable Experimental Methodology for the Study of Wind-Turbine Rotor Blade Aerodynamics

Author:

Costantini M,Fuchs C,Henne U,Klein C,Ondrus V,Bruse M,Löhr M,Jacobs M

Abstract

Abstract The aerodynamic performance of airfoils and blades designed for modern wind-turbine rotors, which have diameters of the order of hundred meters, must be examined at chord Reynolds numbers matching those of practical applications. In general, such high Reynolds numbers cannot be achieved in conventional wind tunnels. Moreover, knowledge on the boundary-layer transition location is essential to evaluate airfoil and blade performance at these flow conditions. This work presents an experimental methodology that can be applied at flow conditions reproducing those of real wind-turbine rotor blades and simultaneously provides aerodynamic coefficients and transition locations. The experimental methodology consists of: the Temperature-Sensitive Paint (TSP) technique for global, non-intrusive and reliable transition detection; conventional pressure measurements for the determination of the aerodynamic coefficients; and the High Pressure Wind Tunnel Göttingen (DNW-HDG) to run the experiments at Reynolds numbers matching those of real applications. The obtained results can be used to verify airfoil and blade performance and to validate numerical predictions. In the present work, the experimental methodology was applied to systematically investigate the aerodynamic performance of an airfoil designed for the mid-span sections of modern wind-turbine rotor blades. The examined chord Reynolds numbers were as high as 12 million and the angle-of-attack ranged from -14° to +20°. The presented methodology was here demonstrated to be mature for productive testing.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference23 articles.

1. The effect of roughness at high Reynolds numbers on the performance of DU 97-W-300Mod;Timmer;Wind Energy,2004

2. Influence of 2D Steps and Distributed Roughness on Transition on a NACA 633-418;Ehrmann,2014

3. Roughness Sensitivity Considerations for Thick Rotor Blade Airfoils;van Rooij,2003

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3