Optimal reconfiguration of distribution network based on deep fuzzy c-means clustering algorithm

Author:

Yang Qiang,Zhao Ergang,Ma Xin,Xu Lina,Du Xiuju,Luo Xin

Abstract

Abstract This study examines the best distribution network reconfiguration to enhance distribution network safety and reduce active power loss. Distribution networks can be reconfigured using a deep fuzzy C-means (FCM) clustering method with the objective of the least amount of active power loss. By creating a novel framework, the size of the neural network is lowered by modifying the number of neurons in input layer. With the simulations tested on IEEE 33-bus distribution network, the outcomes of traditional approaches, such as the Branch-and-Cut and the switching algorithms, are contrasted with the simulation results. The comparative results clearly show advantages to employing the suggested framework for distribution network reconfiguration, such as a quick turnaround time far quicker than the alternatives. These characteristics demonstrate how well the suggested paradigm may be applied to distribution network real-time reconfiguration.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

Reference22 articles.

1. Robust distribution network reconfiguration;Lee;IEEE Transactions on Smart Grid,2014

2. Distribution network reconfiguration for energy loss reduction;Taleski;IEEE Transactions on Power Syst.,1997

3. Radial distribution network reconfiguration for power losses reduction based on improved selective BPSO;Pegado;Electr. Power Syst. Res.,2019

4. Branch-and-cut algorithms for combinatorial optimization problems;Mitchell;Handb. Appl. Optim.,2002

5. Corrective switching algorithm for relieving overloads and voltage violations;Shao;IEEE Transactions on Power Syst.,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3