Aerodynamic behavior of an airfoil under extreme wind conditions

Author:

Neunaber Ingrid,Braud Caroline

Abstract

Abstract Wind turbines operate in the naturally turbulent atmospheric boundary layer. Due to strong flow variations, the aerodynamics at the rotor blades are complex. Therefore, to gain a better understanding of the effect of strong velocity and angle fluctuations on the aerodynamic behavior of an airfoil, we present a new system capable of generating rapid, strong gusts in a wind tunnel, the chopper. It consists of a rotating bar cutting through the inlet of the wind tunnel, thus generating turbulent, strong flow perturbations. Using this system and exposing an airfoil to its flow, we investigate the lift variations caused by the simultaneous, rapid velocity and angle variations. The results show that the lift response of the airfoil is directly correlated with the velocity. The lift response to changes of the angle of attack is determined not only by the change of the angle, but also by the rapidity with which it changes.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference18 articles.

1. Wind gust factors in a coastal wind climate;Bardal;Energy Procedia,2016

2. An insight into the dynamic stall lift characteristics;Choudhry;Experimental Thermal and Fluid Science,2014

3. Experimental study of wind-turbine airfoil aerodynamics in high turbulence;Devinant;Journal of Wind Engineering,2002

4. Turbulence and turbulence generated structural loading in wind turbine clusters, Phd thesis;Frandsen,2007

5. Airfoil longitudinal gust response in separated vs. attached flows;Granlund;Physics of fluids,2014

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3