Optimal parameters selection of the genetic algorithm for global optimization

Author:

Pavlenko A A,Kukartsev V V,Tynchenko V S,Mikhalev A S,Chzhan E A,Lozitskaya E V

Abstract

Abstract The purpose of this work is to summarize the results of research concerning the application of genetic algorithms, since in solving problems of complex systems optimization situations often make it difficult or impossible to use classical methods. To solve this problem, research is carried out on the functions of Akli, Rastrigin, Shekel, complaints handling functions and Rosenbrock functions. The studies are conducted on three starting point scattering algorithms: LPτ sequence, UDC sequences and universal random variation. As a result of the analysis, the option of initialization, selection, recombination, mutation and coding of this algorithm according to given test functions for the data of the scatter of initial points is chosen. The effective parameters of the genetic algorithm according to the results of research are established.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference10 articles.

1. Multipopulation Genetic algorithm for determining crystal structures using powder diffraction data;Zaloga;J. of Surface Investigation: X-ray, Synchrotron and Neutron Techniques,2018

2. Pressure strategy in differential evolution: Exploitation improvement in solving global optimization problems;Stanovov,2018

3. Genetic algorithm for automated X-ray diffraction full-profile analysis of electrolyte composition on aluminium smelters;Zaloga,2016

4. Genetic algorithm optimized non-destructive prediction on property of mechanically injured peaches during postharvest storage by portable visible/shortwave near-infrared spectroscopy;Du;Scientia Horticulturae,2019

5. Density matrix theory of coherent ultrafast dynamics;Kuhn;Theory of Transport Properties of Semiconductor Nanostructures,1998

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3