Use of Beta Regression to investigate the link between home air infiltration rate and self-reported health

Author:

Lu S.,Symonds P.,Verschoor N,Chalabi Z.,Taylor J.,Davies M.

Abstract

Abstract The UK has introduced ambitious legislation for reaching net zero greenhouse gas (GHG) emissions by 2050. Improving the energy efficiency of homes is a key priority in achieving this target and solutions include minimising unwanted heat losses and decarbonising heating and cooling. Making a dwelling more airtight and applying insulation can result in a lower energy demand by reducing unwanted heat loss through fabric and openings. However, the supply of sufficient outdoor air is required to dilute indoor airborne pollutants. This research investigates the relationship between dwelling air infiltration and self-reported health at population neighbourhood level for Greater London. This paper links data from a variety of sources including Energy Performance Certificates (EPCs), the Greater London Authorities’ Large Super Output Area (LSOA) Atlas and the Access to Healthy Assets and Hazards (AHAH) database at LSOA level. Beta regression has been performed to assess the influence of air infiltration rate on self-reported health, whilst controlling for other socioeconomic factors. All factors have been ranked in order of their association with self-reported health. Findings indicate that air infiltration rate has a positive association with the percentage of people reporting themselves to be in “good or very good” health.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference34 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3