Author:
Plotnikov L V,Zhilkin B P,Brodov Yu M
Abstract
Abstract
Piston internal combustion engines (ICE) are the most common sources of energy among heat engines. Currently, most ICEs are equipped with a turbocharging system. Thermomechanical perfection of processes in the intake system largely determines the efficiency of engines. This article proposes a method of stabilizing the pulsating flows in the intake system by installing the leveling grid in the output channel of the turbocharger (TC) compressor. Studies were conducted on an experimental setup, which consisted of a single-cylinder engine and turbocharging system. A constant-temperature thermo-anemometer was used to determine the instantaneous values of the air flow rate and the local heat transfer coefficient. It has been established that the presence of a leveling grid in the intake system leads to a decrease in the turbulence number by up to 25% compared with the basic intake system (while maintaining the flow characteristics). It is shown that the installation of a leveling grid in the intake system of the ICE with TC also leads to a decrease in the heat transfer intensity by up to 15 % compared to the base system. The obtained data expands the knowledge base on the thermomechanics of pulsating flows in hydraulic systems of complex configuration.
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献