Author:
Fukuda Akiko,Watanabe Sennosuke,Hanaoka Ayumi,Iwasaki Masashi
Abstract
Abstract
Some of authors’ recent study shows that the time evolution of the integrable ultradiscrete Toda equation computes eigenvalue of tridiagonal matrices over min-plus algebra, where min-plus algebra is a semiring with two binary operations: ⊕ : = min and ⊗ : = +. In this paper, we rst present a Backlund transformation between the ultradiscrete Toda equation and the ultradiscrete Lotka-Volterra system. Using the Backlund transformation, we show that the ultradiscrete Lotka-Volterra system can also compute eigenvalue of symmetric tridiagonal matrices over min-plus algebra.
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Integrable Systems Related to Matrix LR Transformations;Advanced Mathematical Science for Mobility Society;2024