An intelligent routing optimization strategy based on deep reinforcement learning

Author:

Zhou Xiong,Guo Hongyu

Abstract

Abstract Finding the optimal strategy in network routing has always been a NP hard problem. Due to the complexity and dynamics of network traffic, the existing intelligent routing algorithms have poor generalization ability. Therefore, this paper proposes an intelligent routing strategy based on deep reinforcement learning, and with the help of SDN control can dynamically collect network traffic distribution information, can dynamically adjust the routing strategy. Compared with traffic engineering algorithms such as TCMP and DRL-TE, the end-to-end delay is optimized under different throughput.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference17 articles.

1. The cooperative associate for Internet dataanalysis (CAIDA)

2. A survey onquality-of-service routing algorithms for the Internet[J];Cui;Journal of Software,2002

3. Deep Architecture for Traffic Flow Prediction: Deep Belief Networks with Multitask Learning[J];Huang;IEEE Transactions on Intelligent Transportation Systems,2014

4. The deep learning vision for hetero-geneous network traffic control:proposal, challenges, and future perspective[J];Kato;IEEE Wireless Communications,2017

5. Network traffic classification using machine learning techniques over software defined networks[J];Parsaei;International Journal of Advanced Computer Science and Applications,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3