Deep Learning (CNN) and Transfer Learning: A Review

Author:

Gupta Jaya,Pathak Sunil,Kumar Gireesh

Abstract

Abstract Deep Learning is a machine learning area that has recently been used in a variety of industries. Unsupervised, semi-supervised, and supervised-learning are only a few of the strategies that have been developed to accommodate different types of learning. A number of experiments showed that deep learning systems fared better than traditional ones when it came to image processing, computer vision, and pattern recognition. Several real-world applications and hierarchical systems have utilised transfer learning and deep learning algorithms for pattern recognition and classification tasks. Real-world machine learning settings, on the other hand, often do not support this assumption since training data can be difficult or expensive to get, and there is a constant need to generate high-performance beginners who can work with data from a variety of sources. The objective of this paper is using deep learning to uncover higher-level representational features, to clearly explain transfer learning, to provide current solutions and evaluate applications in diverse areas of transfer learning as well as deep learning.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An improved supervised and attention mechanism-based U-Net algorithm for retinal vessel segmentation;Computers in Biology and Medicine;2024-01

2. Optimizing chest tuberculosis image classification with oversampling and transfer learning;IET Image Processing;2023-12-15

3. Introduction to ML and IoT for Water Management;Innovations in Machine Learning and IoT for Water Management;2023-11-27

4. Transforming Healthcare with Deep Learning Cardiovascular Disease Prediction;2023 International Conference on Ambient Intelligence, Knowledge Informatics and Industrial Electronics (AIKIIE);2023-11-02

5. ASD2-TL∗ GTO: Autism spectrum disorders detection via transfer learning with gorilla troops optimizer framework;Heliyon;2023-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3