Author:
Gupta Jaya,Pathak Sunil,Kumar Gireesh
Abstract
Abstract
Deep Learning is a machine learning area that has recently been used in a variety of industries. Unsupervised, semi-supervised, and supervised-learning are only a few of the strategies that have been developed to accommodate different types of learning. A number of experiments showed that deep learning systems fared better than traditional ones when it came to image processing, computer vision, and pattern recognition. Several real-world applications and hierarchical systems have utilised transfer learning and deep learning algorithms for pattern recognition and classification tasks. Real-world machine learning settings, on the other hand, often do not support this assumption since training data can be difficult or expensive to get, and there is a constant need to generate high-performance beginners who can work with data from a variety of sources. The objective of this paper is using deep learning to uncover higher-level representational features, to clearly explain transfer learning, to provide current solutions and evaluate applications in diverse areas of transfer learning as well as deep learning.
Subject
General Physics and Astronomy
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献