Termination points and homoclinic glueing for a class of inhomogeneous nonlinear ordinary differential equations

Author:

Keeler J S,Blyth M GORCID,King J R

Abstract

Abstract Solutions u(x) to the class of inhomogeneous nonlinear ordinary differential equations taking the form u + u 2 = α f ( x ) for parameter α are studied. The problem is defined on the x line with decay of both the solution u(x) and the imposed forcing f(x) as |x| → ∞. The rate of decay of f(x) is important and has a strong influence on the structure of the solution space. Three particular forcings are examined primarily: a rectilinear top-hat, a Gaussian, and a Lorentzian, the latter two exhibiting exponential and algebraic decay, respectively, for large x. The problem for the top hat can be solved exactly, but for the Gaussian and the Lorentzian it must be computed numerically in general. Calculations suggest that an infinite number of solution branches exist in each case. For the top-hat and the Gaussian the solution branches terminate at a discrete set of α values starting from zero. A general asymptotic description of the solutions near to a termination point is constructed that also provides information on the existence of local fold behaviour. The solution branches for the Lorentzian forcing do not terminate in general. For large α the asymptotic analysis of Keeler, Binder and Blyth (2018 J. Fluid Mech. 832 73–96) is extended to describe the behaviour on any given solution branch using a method for glueing homoclinic connections.

Funder

International Centre for Mathematical Sciences

Institute of Mathematics and its Applications

London Mathematical Society Scheme 4

Publisher

IOP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3