Abstract
Abstract
In this work we analyse the asymptotic behaviour of the solutions of the p-Laplacian equation with homogeneous Neumann boundary conditions posed in bounded thin domains as
R
ε
=
(
x
,
y
)
∈
R
2
:
x
∈
(
0
,
1
)
and
0
<
y
<
ε
G
x
,
x
/
ε
α
for some α > 0. We take a smooth function
G
:
(
0
,
1
)
×
R
↦
R
, L-periodic in the second variable, which allows us to consider locally periodic oscillations at the upper boundary. The thin domain situation is established passing to the limit in the solutions as the positive parameter ɛ goes to zero and we determine the limit regime for three case: α < 1, α = 1 and α > 1.
Funder
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Ministerio de Ciencia e Innovación
Hrvatska Zaklada za Znanost
Fundação de Amparo à Pesquisa do Estado de São Paulo
Subject
Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献