Invariant probabilities for discrete time linear dynamics via thermodynamic formalism *

Author:

Lopes Artur O,Messaoudi Ali,Stadlbauer Manuel,Vargas VictorORCID

Abstract

Abstract We show the existence of invariant ergodic σ-additive probability measures with full support on X for a class of linear operators L : XX, where L is a weighted shift operator and X either is the Banach space c 0 ( R ) or l p ( R ) for 1 ⩽ p < ∞. In order to do so, we adapt ideas from thermodynamic formalism as follows. For a given bounded Hölder continuous potential A : X R , we define a transfer operator L A which acts on continuous functions on X and prove that this operator satisfies a Ruelle–Perron–Frobenius theorem. That is, we show the existence of an eigenfunction for L A which provides us with a normalised potential A ¯ and an action of the dual operator L A ¯ * on the one-Wasserstein space of probabilities on X with a unique fixed point, to which we refer to as Gibbs probability. It is worth noting that the definition of L A requires an a priori probability on the kernel of L. These results are extended to a wide class of operators with a non-trivial kernel defined on separable Banach spaces.

Publisher

IOP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Entropy, Pressure, Ground States and Calibrated Sub-actions for Linear Dynamics;Bulletin of the Brazilian Mathematical Society, New Series;2022-04-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3