Revisiting the Kepler problem with linear drag using the blowup method and normal form theory

Author:

Kristiansen K UldallORCID

Abstract

Abstract In this paper, we revisit the Kepler problem with linear drag. With dissipation, the energy and the angular momentum are both decreasing, but in Margheri et al (2017 Celest. Mech. Dyn. Astron. 127 35–48) it was shown that the eccentricity vector has a well-defined limit in the case of linear drag. This limiting eccentricity vector defines a conserved quantity, and in the present paper, we prove that the corresponding invariant sets are smooth manifolds. These results rely on normal form theory and a blowup transformation, which reveals that the invariant manifolds are (nonhyperbolic) stable sets of (limiting) periodic orbits. Moreover, we identify a separate invariant manifold which corresponds to a zero limiting eccentricity vector. This manifold is obtained as a generalized center manifold over the zero eigenspace of a zero-Hopf point. Finally, we present a detailed blowup analysis, which provides a geometric picture of the dynamics. We believe that our approach and results will have general interest in problems with blowup dynamics, including the Kepler problem with generalized nonlinear drag.

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Circularization in the Damped Kepler Problem;SIAM Journal on Applied Dynamical Systems;2024-06-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3