A hybrid quantum ensemble learning model for malicious code detection

Author:

Xiong QibingORCID,Ding XiaodongORCID,Fei Yangyang,Zhou Xin,Du Qiming,Feng Congcong,Shan Zheng

Abstract

Abstract Quantum computing as a new computing model with parallel computing capability and high information carrying capacity, has attracted a lot of attention from researchers. Ensemble learning is an effective strategy often used in machine learning to improve the performance of weak classifiers. Currently, the classification performance of quantum classifiers is not satisfactory enough due to factors such as the depth of quantum circuit, quantum noise, and quantum coding method, etc. For this reason, this paper combined the ensemble learning idea and quantum classifiers to design a novel hybrid quantum machine learning model. Firstly, we run the Stacking method in classical machine learning to realize the dimensionality reduction of high-latitude data while ensuring the validity of data features. Secondly, we used the Bagging method and Bayesian hyperparameter optimization method applied to quantum support vector machine (QSVM), quantum K nearest neighbors (QKNN), variational quantum classifier (VQC). Thirdly, the voting method is used to ensemble the predict results of QSVM, QKNN, VQC as the final result. We applied the hybrid quantum ensemble machine learning model to malicious code detection. The experimental results show that the classification precision (accuracy, F1-score) of this model has been improved to 98.9% (94.5%, 94.24%). Combined with the acceleration of quantum computing and the higher precision rate, it can effectively deal with the growing trend of malicious codes, which is of great significance to cyberspace security.

Funder

Major Science and Technology Projects in Henan Province, China

Publisher

IOP Publishing

Reference46 articles.

1. Deep residual learning for image recognition;He,2016

2. Frequency-aware contrastive learning for neural machine translation;Zhang,2021

3. Synchronous speech recognition and speech-to-text translation with interactive decoding;Liu,2019

4. A survey on ensemble learning;Dong;Front. Comput. Sci.,2020

5. Ensemble approaches for regression: a survey;Mendes-Moreira;ACM Comput. Surv.,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3