Strong simulation of tracking single photons with which-way-detectors in linear optics

Author:

Gulbahar BurhanORCID

Abstract

Abstract Which-way-detectors (WWDs) are path-entangled detectors characterizing mutual exclusivity between path information and interference visibility in wave-particle duality experiments. We show surprisingly that WWDs allow to utilize single photons distinguishable in time domain to realize linear optical circuits where tracking their paths is exponentially hard for strong simulation analogous to rectangular lattice based Ising models. Distinguishable photons have scalability advantages of generation and detection compared with indistinguishable photons by promising both theoretical and experimental improvements in linear optical computing including boson sampling. We calculate strong simulation complexities by using variable elimination (VE) method for undirected graphs related to tensor network contraction for quantum circuits and recursive Feynman path-integral (RFPI) method to reduce space complexity. Two designs include either a single photon touring m times or m single photons propagating sequentially through an optical circuit composed of n beam splitters and phase shifters entangled with n WWDs. VE method for tracking results in undirected graphs matching with (2 m − 1) × (n + 1) and m × (n + 1) lattice Ising models with computational complexities of O ( m n 2 min ( 2 m 1 , n + 1 ) ) and O ( m n 2 min ( m , n + 1 ) ) in time and O ( 2 m i n ( 2 m 1 , n + 1 ) ) and O ( 2 min ( m , n + 1 ) ) in space for single and multi-photon based designs, respectively. We exploit RFPI method for mn to reduce space complexities to polynomial levels with respect to n and log m. Probability amplitude of specific cases of multi-photon design is represented in terms of Ising partition function with purely imaginary weights to characterize sampling complexity. Open issues about sampling complexity and experimental implementation of multi-WWD set-ups are discussed.

Funder

TUBITAK

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Physics and Astronomy (miscellaneous),Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3