Single-step parity check gate set for quantum error correction

Author:

Üstün GözdeORCID,Morello AndreaORCID,Devitt SimonORCID

Abstract

Abstract A key requirement for an effective quantum error correction (QEC) scheme is that the physical qubits have error rates below a certain threshold. The value of this threshold depends on the details of the specific QEC scheme, and its hardware-level implementation. This is especially important with parity-check circuits, which are the fundamental building blocks of QEC codes. The standard way of constructing the parity check circuit is using a universal set of gates, namely sequential CNOT gates, single-qubit rotations and measurements. We exploit the insight that a QEC code does not require universal logic gates, but can be simplified to perform the sole task of error detection and correction. By building gates that are fundamental to QEC, we can boost the threshold and ease the experimental demands on the physical hardware. We present a rigorous formalism for constructing and verifying the error behavior of these gates, linking the physical measurement of a process matrix to the abstract error models commonly used in QEC analysis. This allows experimentalists to directly map the gates used in their systems to thresholds derived for a broad-class of QEC codes. We give an example of these new constructions using the model system of two nuclear spins, coupled to an electron spin, showing the potential benefits of redesigning fundamental gate sets using QEC primitives, rather than traditional gate sets reliant on simple single and two-qubit gates.

Funder

National Computational Infrastructure

Australian Research Council

Defense Advanced Research Projects Agency

Sydney Quantum Academy

Publisher

IOP Publishing

Reference48 articles.

1. The path to scalable distributed quantum computing;Van Meter;Computer,2016

2. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer;Shor;SIAM J. Comput.,1997

3. Towards quantum chemistry on a quantum computer;Lanyon;Nat. Chem.,2010

4. Quantum algorithm for linear systems of equations;Harrow;Phys. Rev. Lett.,2009

5. An introduction to quantum error correction and fault-tolerant quantum computation;Gottesman,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3