Abstract
Abstract
A qutrit represents a three-level quantum system, so that one qutrit can encode more information than a qubit, which corresponds to a two-level quantum system. This work investigates the potential of qutrit circuits in machine learning classification applications. We propose and evaluate different data-encoding schemes for qutrits, and find that the classification accuracy varies significantly depending on the used encoding. We therefore propose a training method for encoding optimization that allows to consistently achieve high classification accuracy, and show that it can also improve the performance within a data re-uploading approach. Our theoretical analysis and numerical simulations indicate that the qutrit classifier can achieve high classification accuracy using fewer components than a comparable qubit system. We showcase the qutrit classification using the encoding optimization method on a superconducting transmon qutrit, demonstrating the practicality of the proposed method on noisy hardware. Our work demonstrates high-precision ternary classification using fewer circuit elements, establishing qutrit quantum circuits as a viable and efficient tool for quantum machine learning applications.
Funder
Engineering and Physical Sciences Research Council
Reference92 articles.
1. Quantum machine learning
2. An introduction to quantum machine learning
3. Advances in quantum machine learning;Adcock,2015
4. Advances in quantum deep learning: an overview;Garg,2020