Quantum state preparation using tensor networks

Author:

Melnikov Ar AORCID,Termanova A AORCID,Dolgov S VORCID,Neukart FORCID,Perelshtein M RORCID

Abstract

AbstractQuantum state preparation is a vital routine in many quantum algorithms, including solution of linear systems of equations, Monte Carlo simulations, quantum sampling, and machine learning. However, to date, there is no established framework of encoding classical data into gate-based quantum devices. In this work, we propose a method for the encoding of vectors obtained by sampling analytical functions into quantum circuits that features polynomial runtime with respect to the number of qubits and provides>99.9%accuracy, which is better than a state-of-the-art two-qubit gate fidelity. We employ hardware-efficient variational quantum circuits, which are simulated using tensor networks, and matrix product state representation of vectors. In order to tune variational gates, we utilize Riemannian optimization incorporating auto-gradient calculation. Besides, we propose a ‘cut once, measure twice’ method, which allows us to avoid barren plateaus during gates’ update, benchmarking it up to 100-qubit circuits. Remarkably, any vectors that feature low-rank structure—not limited by analytical functions—can be encoded using the presented approach. Our method can be easily implemented on modern quantum hardware, and facilitates the use of the hybrid-quantum computing architectures.

Funder

Academy of Finland

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Physics and Astronomy (miscellaneous),Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics

Reference75 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3