TEQUILA: a platform for rapid development of quantum algorithms

Author:

Kottmann Jakob SORCID,Alperin-Lea SumnerORCID,Tamayo-Mendoza Teresa,Cervera-Lierta Alba,Lavigne Cyrille,Yen Tzu-Ching,Verteletskyi Vladyslav,Schleich Philipp,Anand AbhinavORCID,Degroote MatthiasORCID,Chaney Skylar,Kesibi Maha,Curnow Naomi Grace,Solo Brandon,Tsilimigkounakis Georgios,Zendejas-Morales ClaudiaORCID,Izmaylov Artur FORCID,Aspuru-Guzik AlánORCID

Abstract

Abstract Variational quantum algorithms are currently the most promising class of algorithms for deployment on near-term quantum computers. In contrast to classical algorithms, there are almost no standardized methods in quantum algorithmic development yet, and the field continues to evolve rapidly. As in classical computing, heuristics play a crucial role in the development of new quantum algorithms, resulting in a high demand for flexible and reliable ways to implement, test, and share new ideas. Inspired by this demand, we introduce tequila, a development package for quantum algorithms in python, designed for fast and flexible implementation, prototyping and deployment of novel quantum algorithms in electronic structure and other fields. tequila operates with abstract expectation values which can be combined, transformed, differentiated, and optimized. On evaluation, the abstract data structures are compiled to run on state of the art quantum simulators or interfaces.

Funder

Zapata Computing

Mitacs

Deutscher Akademischer Austauschdienst

US Department of Energy

Van Nevar Bush Faculty Scholarship

Canada 150 Research Chairs Program

Canadian Institute for Advanced Research

Google

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Physics and Astronomy (miscellaneous),Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics

Reference75 articles.

1. Quantum computing in the NISQ era and beyond;Preskill;Quantum,2018

2. Noisy intermediatescale quantum (NISQ) algorithms;Bharti,2021

3. A variational eigenvalue solver on a photonic quantum processor;Peruzzo;Nat. Commun.,2014

4. A quantum approximate optimization algorithm;Farhi,2014

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3