MCTDH-X: The multiconfigurational time-dependent Hartree method for indistinguishable particles software

Author:

Lin RuiORCID,Molignini Paolo,Papariello Luca,Tsatsos Marios C,Lévêque Camille,Weiner Storm E,Fasshauer ElkeORCID,Chitra R,Lode Axel U JORCID

Abstract

Abstract We introduce and describe the multiconfigurational time-depenent Hartree for indistinguishable particles (MCTDH-X) software, which is hosted, documented, and distributed at http://ultracold.org. This powerful tool allows the investigation of ground state properties and dynamics of interacting quantum many-body systems in different spatial dimensions. The MCTDH-X software is a set of programs and scripts to compute, analyze, and visualize solutions for the time-dependent and time-independent many-body Schrödinger equation for indistinguishable quantum particles. As the MCTDH-X software represents a general solver for the Schrödinger equation, it is applicable to a wide range of problems in the fields of atomic, optical, molecular physics, and condensed matter systems. In particular, it can be used to study light–matter interactions, correlated dynamics of electrons in the solid state as well as some aspects related to quantum information and computing. The MCTDH-X software solves a set of nonlinear coupled working equations based on the application of the time-dependent variational principle to the Schrödinger equation. These equations are obtained by using an ansatz for the many-body wavefunction that is a expansion in a set of time-dependent, fully symmetrized bosonic (X = B) or fully anti-symmetrized fermionic (X = F) many-body basis states. It is the time-dependence of the basis set that enables MCTDH-X to deal with quantum dynamics at a superior accuracy as compared to, for instance, exact diagonalization approaches with a static basis, where the number of basis states necessary to capture the dynamics of the wavefunction typically grows rapidly with time. Herein, we give an introduction to the MCTDH-X software via an easy-to-follow tutorial with a focus on accessibility. The illustrated exemplary problems are hosted at http://ultracold.org/tutorial and consider the physics of a few interacting bosons or fermions in a double-well potential. We explore computationally the position-space and momentum-space density, the one-body reduced density matrix, Glauber correlation functions, phases, (dynamical) phase transitions, and the imaging of the quantum systems in single-shot images. Although a few particles in a double well potential represent a minimal model system, we are able to demonstrate a rich variety of phenomena with it. We use the double well to illustrate the fermionization of bosonic particles, the crystallization of fermionic particles, characteristics of the superfluid and Mott-insulator quantum phases in Hubbard models, and even dynamical phase transitions. We provide a complete set of input files and scripts to redo all computations in this paper at http://ultracold.org/data/tutorial_input_files.zip, accompanied by tutorial videos at https://tinyurl.com/tjx35sq. Our tutorial should guide the potential users to apply the MCTDH-X software also to more complex systems.

Funder

Eidgenössische Technische Hochschule Zürich

Austrian Science Fund

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Mr. Giulio Anderheggen

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Physics and Astronomy (miscellaneous),Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3