Abstract
Abstract
The integrated repair of cartilage and bone involves the migration and differentiation of cells, which has always been a difficult problem to be solved. We utilize the natural biomaterial gelatin to construct gelatin methacryloyl (GelMA), a hydrogel scaffold with high cell affinity. GelMA is mixed with different components to print a bi-layer porous hydrogel scaffold with different modulus and composition in upper and lower layers through three-dimensional (3D) printing technology. The upper scaffold adds black phosphorus (BP) and human umbilical cord mesenchymal stem cells (hUMSCs) exosomes (exos) in GelMA, which has a relatively lower elastic modulus and is conducive to the differentiation of BMSCs into cartilage. In the lower scaffold, in addition to BP and hUMSCs exos, β-tricalcium phosphate (β-TCP), which has osteoconductive and osteoinductive effects, is added to GelMA. The addition of β-TCP significantly enhances the elastic modulus of the hydrogel scaffold, which is conducive to the osteogenic differentiation of bone marrow mesenchymal stem cells(BMSCs). In vitro experiments have confirmed that the bi-layer scaffolds can promote osteogenesis and chondrogenic differentiation respectively. And in the rabbit cartilage–bone injury model, MRI and micro-CT results show that the 3D printed bi-layer GelMA composite scaffold has a repair effect close to normal tissue.
Funder
Science and Technology Project of Guangdong Province
Marine Economy Development Project of Department of Natural Resources of Guangdong Province
Research and development Program
Research and Development Program of Guangdong Province
Research and Development Program of Guangzhou
Guangdong Medical Science and Technology Research Fund Project
Affiliated Shunde Hospital of Jinan University
Natural Science Foundation of Guangdong Province
International Science and Technology Cooperation Project of Huangpu District/Guangzhou Development District
Guangdong Basic and Applied Basic Research Foundation
Science and Technology Projects
Subject
Biomedical Engineering,General Medicine,Biomaterials,Biochemistry,Bioengineering,Biotechnology
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献