Bioinks for bioprinting using plant-derived biomaterials

Author:

Hasan Md Mehedee,Ahmad Ashfaq,Akter Mst Zobaida,Choi Yeong-JinORCID,Yi Hee-GyeongORCID

Abstract

Abstract Three-dimensional (3D) bioprinting has revolutionized tissue engineering by enabling the fabrication of complex and functional human tissues and organs. An essential component of successful 3D bioprinting is the selection of an appropriate bioink capable of supporting cell proliferation and viability. Plant-derived biomaterials, because of their abundance, biocompatibility, and tunable properties, hold promise as bioink sources, thus offering advantages over animal-derived biomaterials, which carry immunogenic concerns. This comprehensive review explores and analyzes the potential of plant-derived biomaterials as bioinks for 3D bioprinting of human tissues. Modification and optimization of these materials to enhance printability and biological functionality are discussed. Furthermore, cancer research and drug testing applications of the use of plant-based biomaterials in bioprinting various human tissues such as bone, cartilage, skin, and vascular tissues are described. Challenges and limitations, including mechanical integrity, cell viability, resolution, and regulatory concerns, along with potential strategies to overcome them, are discussed. Additionally, this review provides insights into the potential use of plant-based decellularized ECM (dECM) as bioinks, future prospects, and emerging trends in the use of plant-derived biomaterials for 3D bioprinting applications. The potential of plant-derived biomaterials as bioinks for 3D bioprinting of human tissues is highlighted herein. However, further research is necessary to optimize their processing, standardize their properties, and evaluate their long-term in vivo performance. Continued advancements in plant-derived biomaterials have the potential to revolutionize tissue engineering and facilitate the development of functional and regenerative therapies for diverse clinical applications.

Funder

Bio & Medical Technology Development Program of the National Research Foundation (NRF)& funded by the Korean government

Ministry of Trade, Industry & Energy

National Research Foundation of Korea

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3