AstroDLLC: Efficiently Reducing Storage and Transmission Costs for Massive Solar Observation Data via Deep Learning-based Lossless Compression

Author:

Liu XiaoyingORCID,Liu YingboORCID,Yang Lei,Wu Shichao,Jiang Rong,Xiang Yongyuan

Abstract

Abstract Effective data compression technology is essential for addressing data storage and transmission needs, especially given the escalating volume and complexity of data generated by contemporary astronomy. In this study, we propose utilizing deep learning-based lossless compression techniques to improve compression efficiency. We begin with a qualitative and quantitative analysis of the temporal and spatial redundancy in solar observation data. Based on this analysis, we introduce a novel deep learning-based framework called AstroDLLC for the lossless compression of astronomical solar images. AstroDLLC first segments high-resolution images into blocks to ensure that deep learning model training does not rely on high-computation power devices. It then addresses the non-normality of the partitioned data through simple reversible computational methods. Finally, it utilizes Bit-swap to train deep learning models that capture redundant features across multiple image frames, thereby enhancing compression efficiency. Comprehensive evaluations using data from the New Vacuum Solar Telescope reveal that AstroDLLC achieves a maximum compression ratio of 3.00 per image, surpassing Gzip, RICE, and other lossless technologies. The performance of AstroDLLC underscores its potential to address data compression challenges in astronomy.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3