Enhancing GWOPS Capabilities for Coordinated Multi-Telescope Detection of Gravitational Wave Electromagnetic Counterparts

Author:

Ma Penghui,Xu YunfeiORCID,Hu Jingwei,Zhang ZhenORCID,Ge Liang,He Min,Li Shanshan,Mi Linying,Li Changhua,Fan Dongwei,Cui ChenzhouORCID

Abstract

Abstract The groundbreaking detection of gravitational waves (GWs) has ushered in a new era of astronomical observation, granting us access to cosmic phenomena that are imperceptible to electromagnetic waves. The inherently weak GW signals coupled with the substantial uncertainties in source localization pose significant challenges to the field of astronomy. In this paper, we introduce innovative strategies to enhance the efficiency of observing electromagnetic counterparts to GW events, thereby unlocking further secrets of the cosmos. We present a novel technique for designing observation targets and establishing priorities, progressing from the epicenter to the periphery within the boundaries of the GW error sky region. This method has significantly reduced the average slewing distance of telescopes by 41% compared to traditional methods, thus enhancing observational efficiency. Additionally, we have developed a collaborative observation strategy for telescope networks, allocating observation targets based on the field-of-view (FOV) sizes of individual telescopes. This ensures comprehensive coverage without redundancy, allowing a network of four telescopes to cover a sky area and accumulate observation probability more than four times that of a single telescope operating independently over an equivalent period. Building upon these strategies, we have significantly upgraded GWOPS, the GW Follow-up Observation Planning System developed by the China-VO team, to provide precise observational planning for large FOV (greater than 1 square degree) telescope networks. The system also features a web-based user interface that presents the GW error sky area and observation planning results in a graphical format, significantly improving user interaction and experience. The research presented herein equips astronomers with a robust toolkit, advancing the efficiency of searching for and studying electromagnetic counterparts to GW events, and heralding new frontiers in the research of astrophysics and cosmology.

Funder

the 14th Five-year Informatization Plan of Chinese Academy of Sciences

National Key Research and Development Program of China

National Natural Science Foundation of China

Strategic Priority Research Program of the Chinese Academy of Sciences

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3