Fitting Very Flexible Models: Linear Regression With Large Numbers of Parameters

Author:

Hogg David W.,Villar Soledad

Abstract

Abstract There are many uses for linear fitting; we consider here the interpolation and denoising of data, as when the goal is to fit a smooth, flexible function to a set of noisy data points. Investigators often choose a polynomial basis, or a Fourier basis, or wavelets, or something equally general. They also choose an order, or number of basis functions to fit, and (often) some kind of regularization. We discuss how this basis-function fitting is done, with ordinary least squares and extensions thereof. We emphasize that it can be valuable to choose far more parameters than data points, despite folk rules to the contrary: Suitably regularized models with enormous numbers of parameters generalize well and make good predictions for held-out data; over-fitting is not (mainly) a problem of having too many parameters. It is even possible to take the limit of infinite parameters, at which, if the basis and regularization are chosen correctly, the least-squares fit becomes the mean of a Gaussian process, or a kernel regression. We recommend cross-validation as a good empirical method for model selection (for example, setting the number of parameters and the form of the regularization), and jackknife resampling as a good empirical method for estimating the uncertainties of the predictions made by the model. We also give advice for building stable computational implementations.

Funder

Simons Foundation

Division of Mathematical Sciences

Directorate for Mathematical and Physical Sciences

Publisher

IOP Publishing

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3