Abstract
Abstract
Rotating neutron stars that support long-lived, non-axisymmetric deformations known as mountains have long been considered potential sources of gravitational radiation. However, the amplitude from such a source is very weak and current gravitational-wave interferometers have yet to witness such a signal. The lack of detections has provided upper limits on the size of the involved deformations, which are continually being constrained. With expected improvements in detector sensitivities and analysis techniques, there is good reason to anticipate an observation in the future. This review concerns the current state of the theory of neutron-star mountains. These exotic objects host the extreme regimes of modern physics, which are related to how they sustain mountains. We summarise various mechanisms that may give rise to asymmetries, including crustal strains built up during the evolutionary history of the neutron star, the magnetic field distorting the star’s shape and accretion episodes gradually constructing a mountain. Moving beyond the simple rotating model, we also discuss how precession affects the dynamics and modifies the gravitational-wave signal. We describe the prospects for detection and the challenges moving forward.
Funder
Science and Technology Facilities Council
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献