Ray tracing through absorbing dielectric media in the Schwarzschild spacetime

Author:

Rogers AdamORCID

Abstract

Abstract General Relativity describes the trajectories of light-rays through curved spacetime near a massive object. In addition to gravitational lensing, we include an absorbing dielectric medium given by a complex refractive index known as the Drude model. When absorption is included the eikonal becomes complex, with the imaginary part related to the absorption along a ray between emission and observation points. We extend results from the literature to include dispersion in the index of refraction. The complex Hamiltonian splits into a real part that describes the equations of motion and a constraint equation that governs the momentum loss in the system. We work in coordinates which are fully real, with a real metric in physical spacetime. We assume the dust and plasma distributions of the Drude matter to coincide and vary as a power-law 1 / r h . We find that transmission requires h > 1, otherwise exponential absorption occurs along ray paths. We use ray-tracing through strongly absorbing matter near the surface of the compact star, as well as specializing to a point-lens in the weak-field limit with weakly absorbing matter to generate potentially observable light curves for distant observers. In the appropriate limits, our theory reproduces results from the literature.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3