Overview of the HERD space mission

Author:

Kyratzis DimitriosORCID

Abstract

Abstract The High Energy cosmic Radiation Detector (HERD) is a prominent space-borne instrument to be installed on-board the Chinese Space Station (CSS) around 2027, resulting from a collaboration among Chinese and European institutions. Primary scientific goals of HERD include: precise measurements of the cosmic ray (CR) energy spectra and mass composition at energies up to few PeV, electron/positron spectra up to tens of TeV, CR anisotropy, gamma ray astronomy and transient studies, along with indirect searches for Dark Matter candidates. The detector is configured to accept incident particles from both its top and four lateral sides. Owing to its pioneering design, more than one order of magnitude increase in geometric acceptance is foreseen, with respect to previous and ongoing experiments. HERD is conceived around a deep (∼55 X 0, 3 λ I ) 3D cubic calorimeter (CALO), forming an octagonal prism. Fiber Trackers (FiTs) are instrumented on all active sides, with a Plastic Scintillator Detector (PSD) covering the calorimeter and tracker. Ultimately, a Silicon Charge Detector (SCD) envelops the above-stated sub-detectors, while a Transition Radiation Detector (TRD) is instrumented on one of its lateral faces, for energy calibration in the TeV scale. This work illustrates HERD’s latest advancements and scientific objectives along with an overview of upcoming activities.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. HERD space mission: Probing the Galactic Cosmic Ray frontier;Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment;2024-11

2. Silicon PIN array-based charge measurement detector for HERD beam test;Radiation Detection Technology and Methods;2024-05-24

3. Design and scientific objectives of the HERD cosmic ray experiment;NUOVO CIM C-COLLOQ C;2024

4. Design and prototyping of the readout electronics for the transition radiation detector in the high energy cosmic radiation detection facility;Nuclear Science and Techniques;2024-04

5. X-ray luminescence and characteristics of potassium-doped cesium iodide film;Optical Materials;2024-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3