Enhancement of structural, optical, electrical, optoelectronic and thermoelectric properties of ZnO thin film via Ni doping and Ni-B co-doping

Author:

Üzar NORCID,Abdulaziz UORCID,Erbas O G,Aydin M,Dolgun M F

Abstract

Abstract In this study, the effects of nickel (Ni) and boron (B) elements on the structural, optical, electrical, optoelectronic, and thermoelectric properties of zinc oxide (ZnO) material were investigated. Therefore, undoped ZnO, 3% Ni-doped ZnO (Zn0.97Ni0.03O), and 3% Ni-1% B co-doped ZnO (Zn0.96Ni0.03B0.01O) solutions were prepared by the sol gel method. The produced solutions were coated on glass and p-type Si substrates via dip coating and spraying methods in the form of thin films. We produce pure and n-type semiconductors in the form of nanodots which have wurtzite ZnO polycrystalline structure for all samples. Ni and B co-doped sample is morphologically, electrically and optically enhanced the ZnO material with 3.08 eV band gap, homogenous surface and the highest electrical conductivity. In addition, the best material among the three samples that can be used as a visible light-sensitive sensor is Zn0.96Ni0.03B0.01O under feedback voltage. Technologically, this material can be turned into a photodiode device in the form of Au/Zn0.96Ni0.03B0.01O/p-Si. While the obtained ideality factor of ZnO from the forward bias region decreases from 5.7 to 3.4, its barrier height increases from 0.636 eV to 0.667 eV and serial resistance of contact decreases from 121.6 × 103 Ω to 5.6 × 103 Ω with Ni and B co-doping. Ni doping thin film improves the photovoltaic, and thermoelectric properties of ZnO. Ni-doped ZnO sample can be studied in form of the thin films as a thermoelectric material due to its ZT value is nearly 1.73 × 10–4 at 650 K. Its thermoelectric performance is 13 times better than the that of pure ZnO for the same temperature values. The efficiency of Ni-doped ZnO sample as solar cell increases 10 times compared to pure ZnO. In addition to the production of materials with improved energy efficiency, economical products suitable for use in large areas have been obtained in this study.

Funder

TUBITAK

Research Fund of the Istanbul University

Publisher

IOP Publishing

Reference50 articles.

1. High-temperature thermoelectric properties of Cd1-xPrxO;Wang;Scr. Mater.,2013

2. Enhanced thermoelectric properties of self-assembling ZnO nanowire networks encapsulated in nonconductive polymers;Volkova;Sci. Rep.,2023

3. New method for preparing ZnO layer for efficient and stable organic solar cells;Wang;Adv. Mater.,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3