A quantum feature selection framework via ground state preparation

Author:

Wang Lu,Chen Zhao-YunORCID,Le Feng-Yu,Yu Zhi-Qian,Xue Cheng,Zhuang Xi-Ning,Yan Qing,Yang Yang,Wu Yu-Chun,Guo Guo-PingORCID

Abstract

Abstract Traditional feature selection methods face the challenges of increasing time complexity and local optima. In previous works, many classical feature selection methods were accelerated through quantum algorithms. However, these approaches still inherit the constraints of these classical methods as they do not address the issue of local minima. Here, we propose a novel quantum feature selection framework based on the classifier’s result, which utilizes Hamiltonian encoding and a ground state preparation algorithm. Numerical experiments are conducted on real-world datasets from the finance and medicine domains. Moreover, the results demonstrate that the proposed method produces the same or better classification accuracy on the classifier than the original data without feature selection. Overall, our approach presents a promising solution to feature selection using quantum computing.

Funder

Innovation Program for Quantum Science and Technology

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

Reference43 articles.

1. Machine learning: trends, perspectives, and prospects;Jordan;Science,2015

2. Hybrid genetic algorithms for feature selection;Oh;IEEE Trans. Pattern Anal. Mach. Intell.,2004

3. Feature selection for classification: a review;Tang;Documentación Administrativa,2014

4. Controlling ip spoofing through interdomain packet filters;Duan;Dependable and Secure Computing, IEEE Transactions on,2008

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3