Potential for multi-application advancements from doping zirconium (Zr) for improved optical, electrical, and resistive memory properties of zinc oxide (ZnO) thin films

Author:

Chawla Amit K,Hothi Navjot,Umamaheswara Rao Akula,Kharb Archana Singh,Chanana Avaani,Mir Kifayat H,Kumar PramodORCID,Garg TarunORCID,Chawla Vipin,Jain Ravish,Pant Charu,Kumar SanjeevORCID

Abstract

Abstract Transition metal-doped Zinc oxide (ZnO) thin films with an optimal wide band gap and semiconducting nature find numerous applications in optoelectronic devices, gas sensors, spintronic devices, and electronics. In this study, Zirconium (Zr) doped ZnO thin films were deposited on ITO (Indium Tin oxide) coated glass substrate using RF-magnetron sputtering. Optical and electrical properties were examined for their potential use in resistive random-access memory (RRAM) applications. X-ray Diffraction (XRD), UV–vis spectroscopy, x-ray photoelectron spectroscopy (XPS), Atomic force microscopy (AFM) and Scanning electron microscopy (SEM) were used to investigate structural, optical, and compositional properties and roughness respectively. The results demonstrate that the films possess crystalline properties. Additionally, an augmentation in Zr concentration correlates with an elevation in the optical band gap, ascending from 3.226 eV to 3.26 eV, accompanied by an increase in Urbach energy from 0.0826 eV to 0.1234 eV. The film with the highest Zr content among all the films demonstrated the best electrical performance for resistive memory applications. Incorporating Zr as a dopant shows enhancement in the electrical performance and such ZnO films with optimum concertation of Zr can potentially be used in RRAM. ZnO being a versatile host material, its doping with Zr may extend its applications in catalysis, gas sensing, energy storage, and biomedical engineering. ZnO thin films employ zirconium (Zr) as a dopant, which is a novel way to improve the material’s characteristics. Although ZnO has been thoroughly researched, adding Zr presents a novel technique to enhance optical, electrical, and resistive memory characteristics all at once that has not been fully investigated.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3