Abstract
Abstract
The present study focuses on a real finance nonlinear dynamic system (FNLDS), which has been shown to exhibit chaotic behavior. The solutions for such nonlinear dynamical systems (NLDSs) have typically been derived using numerical techniques. The objective of this study aims to; firstly, derive approximate analytical solutions for the complex FNLDS (CFNLDS) by constructing the Picard iterative scheme. The convergence of this scheme is proven, and the error analysis shows good tolerance, indicating the efficiency of the technique. Second, a novel criterion for synchronizing the real and imaginary parts of the system is presented, based on a necessary condition. Thirdly, a new method for constructing the extended center manifold is introduced. The 3D portrait reveals a feedback scroll pattern, while the 2D portrait, representing the mutual components, shows multiple pools. The synchronization of the real and imaginary parts of the system is demonstrated graphically. The FNLDS is tested for sensitivity dependence against tiny variations in the initial conditions, and it is found that the system components are moderately sensitive. Furthermore, the Hamiltonian and the extended center manifold establish a two-fold structure. It is observed that the effect of the α-β derivative leads to a delay in the behavior of the solutions.
Reference38 articles.
1. A New finance chaotic attractor;Cai;Int J. Nonl. Sci.,2007
2. A financial chaotic system control method based on intermittent controller;Lu;Hindawi M.P in Eng,2020
3. A study on the complexity of a new chaotic financial system;Liao;Hindawi Complexity,2020
4. A new finance chaotic system, its electronic circuit realization, passivity based synchronization and an application to voice encryption;Vaidyanathan;Nonl. Eng.,2019
5. Localization of compact invariant sets of a new nonlinear finance chaotic system;Cai;Nonl. Dyn.,2012