First-principles design of ferromagnetic monolayer MnO2 at the complex interface

Author:

Wang Rui-Qi,Lei Tian-Min,Fang Yue-WenORCID

Abstract

Abstract Rapidly increasing interest in low-dimensional materials is driven by the emerging requirement to develop nanoscale solid-state devices with novel functional properties that are not available in three-dimensional bulk phases. Among the well-known low-dimensional systems, complex transition metal oxide interface holds promise for broad applications in electronic and spintronics devices. Herein, intriguing metal-insulator and ferromagnetic-antiferromagnetic transitions are achieved in monolayer MnO2 that is sandwiched into SrTiO3-based heterointerface systems through interface engineering. By using first-principles calculations, we modeled three types of SrTiO3-based heterointerface systems with different interface terminations and performed a comparative study on the spin-dependent magnetic and electronic properties that are established in the confined MnO2 monolayer. First-principles study predicts that metal-insulator transition and magnetic transition in the monolayer MnO2 are independent on the thickness of capping layers. Moreover, 100% spin-polarized two-dimensional electron gases accompanied by robust room temperature magnetism are uncovered in the monolayer MnO2. Not only is the buried MnO2 monolayer a new interface phase of fundamental physical interest, but it is also a promising candidate material for nanoscale spintronics applications. Our study suggests interface engineering at complex oxide interfaces is an alternative approach to designing high-performance two-dimensional materials.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3