Capacitive compressive stress self-sensing behavior of cement mortar and its dependence on the thickness

Author:

Ozturk MuratORCID

Abstract

Abstract Capacitance based compressive stress/strain self-sensing properties and its dependence on thickness is presented for the fist time. Coplanar electrode configuration is used for the electrical measurements and known weights are used to create cyclic stresses on the mortar samples with different thicknesses. Mortar plates with 6 mm, 10 mm and 15 mm thicknesses are produced and capacitance change with stress application is measured with an inductance-capacitance-resistance meter (LCR meter). Capacitance value of the mortar with 6 mm, 10 mm and 15 mm thicknesses are 450 pF, 532 pF and 607 pF, respectively. Capacitance increases as thickness increases. However, stress sensitivities of the mortar with 6 mm, 10 mm and 15 mm thicknesses are measured as 3.1 × 10–6 P−1, 3.1 × 10–7 P−1 and 1.1 × 10–7 P−1. Stress sensitivity decreases with increasing the mortar thickness. While capacitive self-sensing is effective when the mortar thickness is known, capacitive self-sensing is ineffective with varying mortar thickness. This research contributes valuable insights into the practical application of capacitance-based sensing in materials subjected to compressive stresses, highlighting the need for considerations regarding thickness variations in real-world applications such as load monitoring and weighing.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3