Abstract
Abstract
In recent decades, fuzzy differential equations of integer and arbitrary order are extensively used for analyzing the dynamics of a mathematical model of the physical process because crisp operators of integer and arbitrary order are not able to study the model being studied when there is uncertainty in values used in modeling. In this article, we have considered the time-fractional Fisher equation in a fuzzy environment. The basic aim of this article is to deduce a semi-analytical solution to the fuzzy fractional-order non-dimensional model of the Fisher equation. Since the Laplace-Adomian method has a good convergence rate. We use the Laplace- Adomian decomposition method (LADM) to determine a solution under a fuzzy concept in parametric form. We discuss the convergence and error analysis of the proposed method. For the validity of the proposed scheme, we provide few examples with detailed solutions. We provide comparisons between exact and approximate solutions through graphs. In the end, the conclusion of the paper is provided.
Subject
Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献