Phonon dynamics in lead free perovskite (1-x)KNN-xBAN (x = 0.0–0.1): a temperature dependent raman study

Author:

Anjali AnjaliORCID,Kumar DeepuORCID,Dwivedi Sushmita,Kumar SunilORCID,Kumar Pradeep

Abstract

Abstract K0.5Na0.5NbO3 (KNN) has been under extensive focus in recent times due to it being an alternative to lead-free multifunctional materials and properties like room temperature ferroelectricity, stability in air and technology friendly applications. In this work, we report a comprehensive temperature dependent, compositional change induced structural variation and polarization dependent Raman spectroscopy on BaAl0.5Nb0.5O3 (BAN) doped KNN in the spectral range of 10–1000 cm−1. Multiple phase transitions are marked by the strong renormalization of the phonon self-energy parameters, i.e. mode frequencies and linewidths, in the temperature range of 83 K to 623 K. Change in the phase transition temperature is tracked via phonon anomalies with varying doping concentration, x = 0.0, 0.02, 0.05, 0.07 and 0.1, and is found to be as large as ∼100 K for orthorhombic to tetragonal phase transition for x = 0.1. Raman extracted phase diagram shows that the stability of the ferroelectric orthorhombic phase in the vicinity of room temperature increases with the increasing doping concentration. Also, from our polarization-dependent measurements we could decipher the symmetry of the observed phonon modes for KNN system.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3