Theoretical investigation of a single vapor bubble during Al2O3/H2O nanofluids in power-law fluid affected by a variable surface tension

Author:

Abu-Nab A K,Selima E S,Morad Adel MORCID

Abstract

Abstract This article analyzes the growth of the vapor bubble in a novel model of power-law nanofluids (Al2O3/H2O) under a new effect of variable surface tension. The governing equations of the rising vapor bubble flow model are formulated and converted to a single equation describing the bubble dynamics behavior. By employing the model of Plesset and Zwick method, we investigate a new model of equations within power-law nanofluids to examine the effect of different physical parameters such as initial superheating liquid, critical bubble radius, and thermal diffusivity on the vapor bubble formation. Furthermore, the effects of surface tension behavior with the initial bubble radius, time, and initial rate of bubble radius are examined. It is found that the growth of the vapor bubble radius increases with the increase of initial superheating liquid, critical bubble radius, and thermal diffusivity. In addition, the connection between shear stress and shear rate is analyzed in detail. Using appropriate values for the physical parameters, the behavior of solutions of the vapor bubble is discussed. Based on the conducted simulation analysis, the behavior of the solutions is found to be more accurate than those in the previous studies. Besides, the obtained results demonstrate that the vapor bubble in power-law nanofluids grows slower than in pure water.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3