The morphological and mechanical characterization of UHMWPE based composite: an experimental study

Author:

Basrani JitendraORCID,Kumar ManojORCID,Kumar PramodORCID

Abstract

Abstract Natural fiber and its hybrid composites have a promising future due to their economic, lightweight, environmentally superior, and sustainable properties. The purpose of this research is to explore the morphological and physical properties of composites made of hemp-epoxy and ultra-high molecular weight polyethylene-hemp-epoxy. The compression moulding technique is used to fabricate the UHMWPE -hemp hybrid composite and hemp-epoxy sample at a different orientation. These samples are subjected to different types of mechanical testing, including flexural, impact, hardness, and tensile tests at different strain rates as per ASTM standards. The result indicates that the flexural strength, impact strength, and hardness of the hybrid composite are more than the hemp composite. Scanning electron microscopy has been used to examine fractography at various strain rates. It is found that with the increase in the strain rate, tensile strength increases. It is observed that there is an increase of more than 56.49% in the specimen’s strength with the addition of 8.3% ultrahigh molecular weight polyethene fiber reinforcement.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3