Generalized quantum geometric tensor for excited states using the path integral approach

Author:

Juárez Sergio BORCID,Gonzalez Diego,Gutiérrez-Ruiz DanielORCID,Vergara J DavidORCID

Abstract

Abstract The quantum geometric tensor, composed of the quantum metric tensor and Berry curvature, fully encodes the parameter space geometry of a physical system. We first provide a formulation of the quantum geometrical tensor in the path integral formalism that can handle both the ground and excited states, making it useful to characterize excited state quantum phase transitions (ESQPT). In this setting, we also generalize the quantum geometric tensor to incorporate variations of the system parameters and the phase-space coordinates. This gives rise to an alternative approach to the quantum covariance matrix, from which we can get information about the quantum entanglement of Gaussian states through tools such as purity and von Neumann entropy. Second, we demonstrate the equivalence between the formulation of the quantum geometric tensor in the path integral formalism and other existing methods. Furthermore, we explore the geometric properties of the generalized quantum metric tensor in depth by calculating the Ricci tensor and scalar curvature for several quantum systems, providing insight into this geometric information.

Funder

Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3