Color image encryption scheme for distributed architecture with SCFP chaotic map

Author:

Liu YunhaoORCID,Xue RuORCID

Abstract

Abstract Image protection mechanism in distributed cloud network is an essential component of information security field. In this paper, a novel one-dimensional sine-cosine fractional power chaotic map (SCFP) is proposed. Results of various dynamical system tests illustrate that SCFP exhibits superior chaotic behavior over its infinite positive real parameter range, whose complexity and unpredictability can guarantee the strength of image cryptosystem. Furthermore, a color image encryption scheme tailored for distributed architecture is devised. Firstly, a hybrid cryptographic mechanism is designed to perform diffusion and confusion encryption for image data and ECC public key encryption for intermediate keys. Secondly, the diffusion structure elevates processing units to row-column level, and the diffusion order is dictated by a pseudo-random sequence generated by SCFP. Thirdly, the confusion structure extends the unbiased and efficient Fisher-Yates algorithm into a 2D space, and adopts a design of dual plaintext-related key. Lastly, three techniques namely QOI lossless compression, DE information embedding and threshold secret sharing are integrated to resolve issues of data volume inflation, key synchronization difficulty and poor fault tolerance. Simulation experiments conducted on multiple color images demonstrate that the proposed scheme offers significant ciphertext randomness, sufficiently large key space and strong key sensitivity, which can ensure the integrity of image data and resist various typical cryptographic attacks, and outperforms existing schemes oriented to centralized architecture in terms of security and efficiency.

Funder

Major Programs Incubation Plan of Xizang Minzu University

Graduate Research Innovation and Practice Project of Xizang Minzu University

National Natural Science Foundation of China

Publisher

IOP Publishing

Reference59 articles.

1. The data encryption standard (DES) and its strength against attacks;Coppersmith;IBM J. Res. Dev.,1994

2. Rijndael: the advanced encryption standard;Daemen;Dr Dobbs J.,2001

3. A method for obtaining digital signatures and public-key cryptosystems;Rivest;Commun. ACM,1978

4. Simple mathematical models with very complicated dynamics;May;Nature,1976

5. Deterministic nonperiodic flow;Lorenz;J. Atmos. Sci.,1963

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3