Design and simulation of a gas sensitive junctionless FinFET based on conducting polymer as the gate material

Author:

Mehrdad Farzad,Ahangari ZahraORCID

Abstract

Abstract In this study, we demonstrate a multi-gas sensing device utilizing junctionless Fin-shaped Field Effect Transistor (FinFET) with conducting polymer as the gate material. The higher gas response is explained based on workfunction modulation of the conducting polymer gate, Poly(p-phenylene), upon gas molecule absorption. By definition, threshold voltage and off-state current variation before and after gas absorption are considered as two different measures for assessing the responsivity and sensitivity of the sensor. Basically, the main focus of this paper is designing a low power device, in which the change in the electrical characteristics of the device under gas exposure can be detected even in the absence of the gate bias. The high sensitivity of the proposed FinFET device as a gas sensor is mainly attributed to the large surface area of the 3D structure. We optimize the gas-sensing properties by investigating impact of critical physical and structural design parameters on the responsivity and selectivity of the sensor. In addition, statistical analysis is carried out to calculate coefficient of variation (CV) measure, for assessing the change in the responsivity of the gas sensor based on variation of main design parameters. Our results provide a route to design a low power CMOS compatible gas sensor that has fast response with high distinguishing selectivity and can be scaled down to nanoscale regime.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3